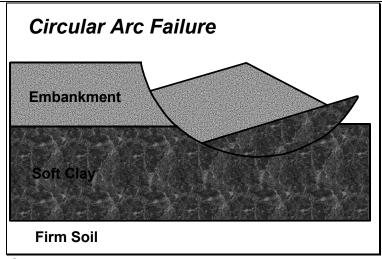
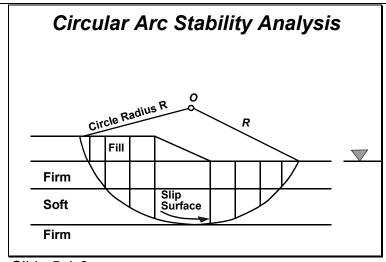
LESSON 5

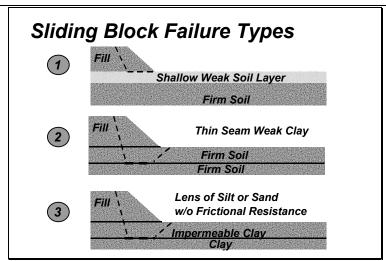

TOPIC 1

Slope Stability

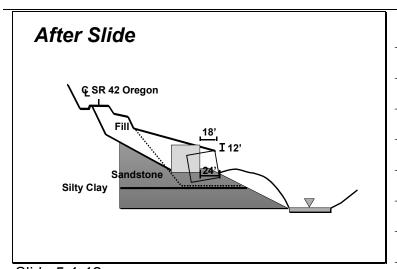
SLOPE STABILITY	
Lesson 5 - Topic 1	
Slide 5-1-1	
Silue 3-1-1	
SLOPE STABILITY	
OLOI L OTTIBILITY	
4 Octobrida Decistica & Deixion Ferra	
1. Compute Resisting & Driving Forces	
2. Explain Effects of Water Pressure on	
Existing a Desistance	
Frictional Resistance	
Frictional Resistance	
Frictional Resistance	
Frictional Resistance ACTIVITIES: Circular Arc Analysis	
Frictional Resistance ACTIVITIES: Circular Arc Analysis	
Frictional Resistance	
Frictional Resistance ACTIVITIES: Circular Arc Analysis	
Frictional Resistance ACTIVITIES: Circular Arc Analysis	
Frictional Resistance ACTIVITIES: Circular Arc Analysis	
Frictional Resistance ACTIVITIES: Circular Arc Analysis	
Frictional Resistance ACTIVITIES: Circular Arc Analysis Sliding Block Analysis	
Frictional Resistance ACTIVITIES: Circular Arc Analysis Sliding Block Analysis	
Frictional Resistance ACTIVITIES: Circular Arc Analysis	
Frictional Resistance ACTIVITIES: Circular Arc Analysis Sliding Block Analysis	
Frictional Resistance ACTIVITIES: Circular Arc Analysis Sliding Block Analysis	
Frictional Resistance ACTIVITIES: Circular Arc Analysis Sliding Block Analysis	
Frictional Resistance ACTIVITIES: Circular Arc Analysis Sliding Block Analysis	
Frictional Resistance ACTIVITIES: Circular Arc Analysis Sliding Block Analysis	
Frictional Resistance ACTIVITIES: Circular Arc Analysis Sliding Block Analysis	
Frictional Resistance ACTIVITIES: Circular Arc Analysis Sliding Block Analysis	
Frictional Resistance ACTIVITIES: Circular Arc Analysis Sliding Block Analysis	
Frictional Resistance ACTIVITIES: Circular Arc Analysis Sliding Block Analysis	
Frictional Resistance ACTIVITIES: Circular Arc Analysis Sliding Block Analysis	

Embankments: Major Design Considerations Stability Settlement Effects on the Structure	
Slide 5-1-3	
Embankment Stability Problem Soils Low Strength Clays Low Strength Silts Peats Organic Silts and Organic Clays Thin, Weak Seams (Clay, Silt, Sand)	
Slide 5-1-4	

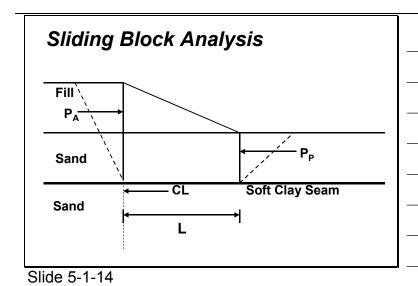

Slide 5-1-5	
Major Stability Problems	
Circular and Sliding Block Failures	
Slide 5-1-6	


Slide 5-1-7

Slide 5-1-8


Slide 5-1-9

Slide 5-1-10


Slide 5-1-11

Slide 5-1-12

Slide 5-1-13

Participant Workbook

Effect of Water on Slope Stability	
 ■ Frictional Soils Below Water Table, Buoyancy Reduces Shearing Resistance ■ Clays Cohesive Strength Decreases as Moisture Content Increases 	
L Slide 5-1-15	.
	1
Effect of Water on Slope Stability (Cont'd)	
■ Fills on Clays and Silts - Soil Consolidates as Water is Squeezed Out -	
Factor of Safety Increases With Time ■ Cuts in Clay	
 Soil Absorbs Water When Overburden Pressure Removed - Factor of Safety Decreases With Time 	
Slide 5-1-16	

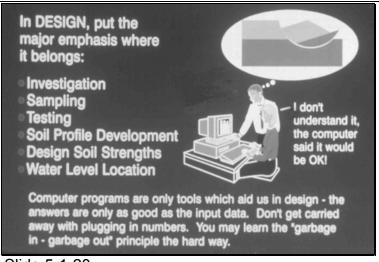
Effect of Water on Slope Stability (Cont'd)

- Shales, Claystones, Siltstones, Etc.
 - Weak Rock Materials "Slake" When Exposed to Water - Embankments Undergo Internal Settlement or Failure

Slide 5-1-17

Embankments: Recommended Safety Factors

Safety Factor = <u>Resisting</u> Driving


- **■** End Slope Conditions
 - Minimum Safety Factor = 1.30
- Side Slope Conditions
 - Minimum Safety Factor = 1.25

Ρ	ar	tic	qi	an	tΜ	/or	k	boo	k

Basis for Selection of Design Safety Factor

- Confidence in Subsurface Data (Particularly Soil Strength Value)
- Stability Analysis Method
- **■** Consequences of Failure

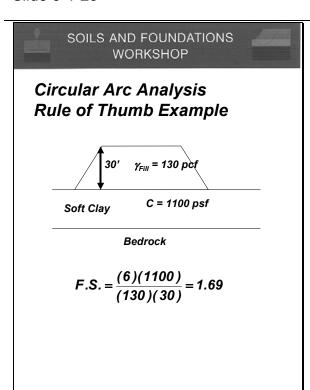
Slide 5-1-19

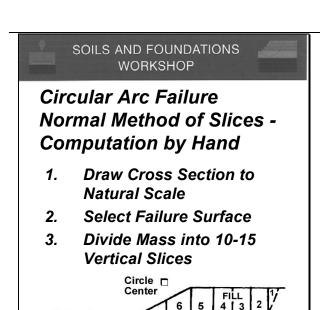
Circular Arc Failure Analysis Methods

- Rule of Thumb
- · Hand Solutions
- Computer Programs

Slide 5-1-21

SOILS AND FOUNDATIONS WORKSHOP	
$F.S. = \frac{\Sigma \ Resisting \ Moments}{\Sigma \ Driving \ Moments}$	
$=rac{\sum \ extbf{ extit{N}} \ extbf{ extit{Tan}} \phi \ extbf{ extit{R}} + \sum \ extbf{ extit{CIR}}}{\sum \ extbf{ extit{T}} \ extbf{ extit{R}}}$	
$\therefore F.S. = \frac{\sum Resisting Forces}{\sum Driving Forces}$	
$= \frac{\sum N Tan\phi + \sum CI}{\sum T}$	


Circular Arc Analysis for Factor of Safety


The Rule of Thumb is:

Factor of Safety (F.S.) =
$$\frac{6C}{\gamma_{Fill} \times H_{Fill}}$$

Where: C = Cohesive Strength of Clay (psf) $\gamma_{Fill} = Fill \; Soil \; Unit \; Weight \; (pcf)$ $H_{fill} = Fill \; Height \; (ft.)$

Slide 5-1-23

7

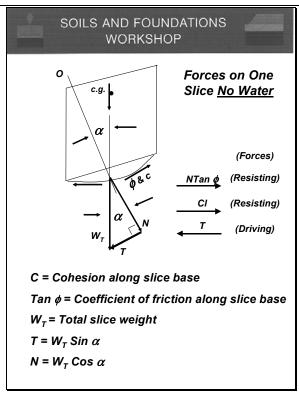
Slip Surface

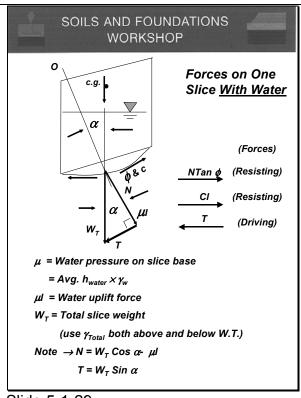
Firm

Soft

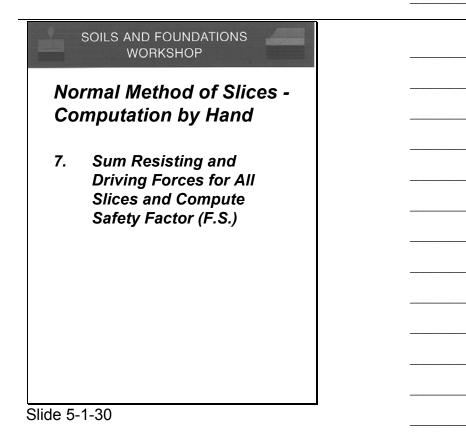
Firm

Slide 5-1-25





Normal Method of Slices - Computation by Hand


- 4. Compute Total Weight (W_T) of Each Slice
- 5. Compute Resisting
 Forces: N Tanφ μl
 (Frictional) and Cl
 (Cohesive) for Each Slice
- 6. Compute the Tangential Driving Force (T).

Slide 5-1-27

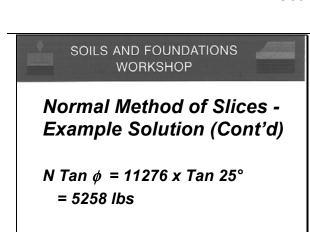
Slide 5-1-29

Participant Workbook

Normal Method of Slices -Example for One Slice with No Water

Assume:

- γ_{total} = 120 pcf, slice height = 10', slice width = 10', ϕ = 25°, α = 20°, I =11', C = 200 psf.
- Find: Resisting and Driving Forces


Slide 5-1-31

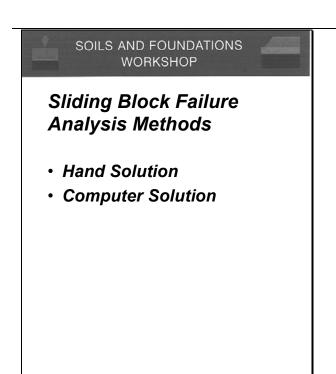
SOILS AND FOUNDATIONS WORKSHOP

Normal Method of Slices - Example Solution

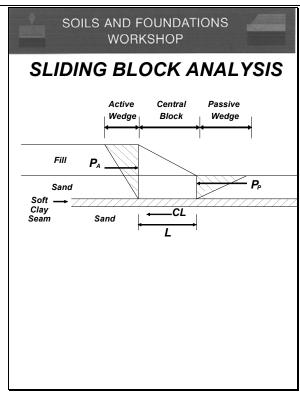
 $W_T = \gamma_{total} x \text{ slice area } (x \ 1' \text{ thick})$ = 120 pcf x 10' x 10' = 12000 lbs

 $N = W_T \cos \alpha - \mu I$ = 12000 lbs x Cos 20° = 11276 lbs

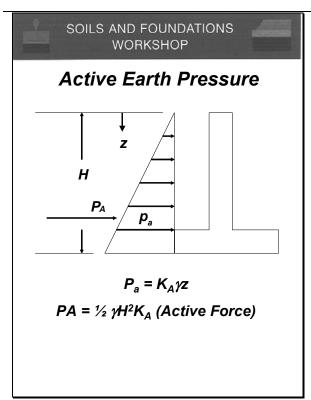
CI = 200 psf x 11' x 1'= 2200 lbs

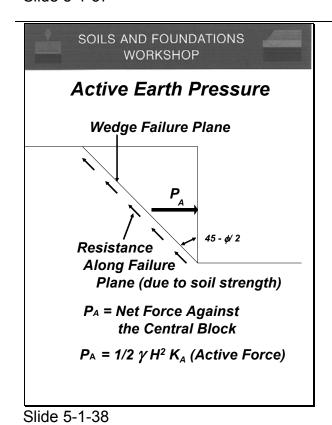

 $T = W_t Sin \alpha$ = 12000 lbs x Sin 20° = 4104 lbs

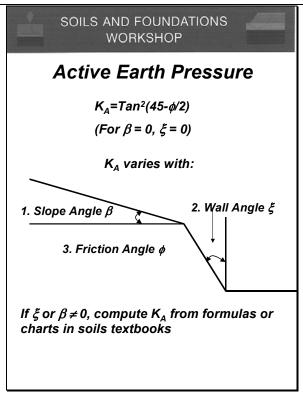
Slide 5-1-33

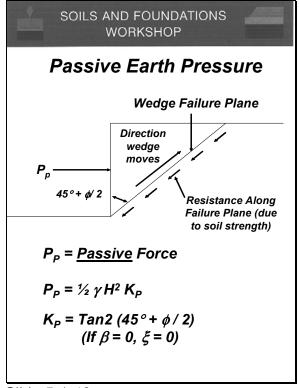


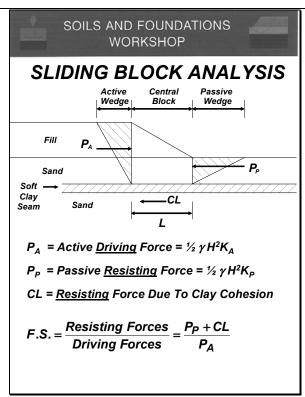
Normal Method of Slices Group Exercise


Assuming the water is 5' above the slice base, which of the force components change in this exercise?


Slide 5-1-35


Slide 5-1-36


Slide 5-1-37


Participant Workbook

Slide 5-1-39

Slide 5-1-40

Slide 5-1-41

.

SOILS AND FOUNDATIONS WORKSHOP

Solution:

Step 1: Compute Driving Force (PA)

 Active Driving Force (P_a) (consider a 1 ft. wide strip of the embankment)

$$P_A = \frac{1}{2} \gamma_T H^2 K_A$$

(Use γ_T as the water table is below the failure plane)

$$K_A = Tan^2 (45 - \frac{\phi}{2}) = Tan^2 (45 - \frac{30}{2}) = 0.33$$

$$P_A = \frac{1}{2} (0.110 \text{ kcf}) (30')^2 (0.33) (1') = 16.5 \text{K}$$

Slide 5-1-43

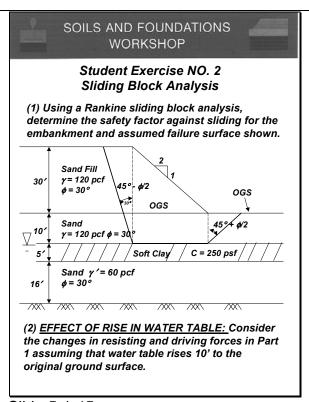
SOILS AND FOUNDATIONS WORKSHOP

Solution (cont'd):

Step 2: Compute Resisting Force (CI & Pp)

• Central Block Resistance (CI)

$$CI = (0.400 \text{ ksf})(40')(1') = 16.0 \text{K}$$


• Passive Resisting Force (Pp)

$$P_p = \frac{1}{2} \gamma_T H^2 K_p$$

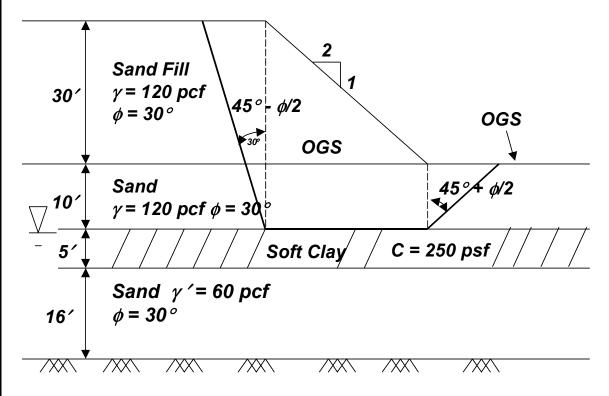
$$K_p = Tan^2(45 + \frac{\phi}{2}) = Tan^2(45 + \frac{30}{2}) = 3.0$$

$$P_p = (\frac{1}{2})(0.110 \text{ kcf})(10)^2(3.0)(1') = 16.5 \text{ K}$$

Safety Factor =
$$\frac{CI + P_p}{P_A} = \frac{16.0K + 16.5K}{16.5K} = 1.97$$

Slide 5-1-45

SOILS AND FOUNDATIONS WORKSHOP Slope Stability


- Compute Resisting and Driving forces
- Explain the Effects of Water Pressure on Frictional Resistance

Activities: Circular Arc Sliding Block

SOILS AND FOUNDATIONS WORKSHOP

Student Exercise NO. 2 Sliding Block Analysis

(1) Using a Rankine sliding block analysis, determine the safety factor against sliding for the embankment and assumed failure surface shown.

(2) <u>EFFECT OF RISE IN WATER TABLE:</u> Consider the changes in resisting and driving forces in Part 1 assuming that water table rises 10' to the original ground surface.